Int J. Heat Mass Transfer Vol 21, pp 1505-1516
Pergamon Press Ltd 1978 Prmnted in Great Britain

SHORT-TIME SOLUTION FOR UNSTEADY
FORCED CONVECTION HEAT TRANSFER FROM AN
IMPULSIVELY STARTED CIRCULAR CYLINDER

Taxkao SANO
Department of Mechanical Engineering, University of Osaka Prefecture, Sakai, Osaka, Japan

(Received 14 July 1977 and in revised form 26 March 1978)

Abstract—Short-time solution for unsteady heat transfer from an impulsively started circular cylinder is

presented. Consideration is given to the case where unsteady temperature field is produced by the sudden

imposition of a constant temperature difference between the body and the fluid as the impulsive motion is

started. The present theory should be valid for any Prandtl number and for any Reynolds number larger

than about 100. The Nusselt number results obtained are compared with the available numerical and
theoretical ones.

NOMENCLATURE

h, heat-transfer coefficient ;

H, H,, functions defined by (53);

k, thermal conductivity;

Nu, local Nusselt number;

Nu, mean Nusselt number;

Pe,  Peclet number;

Pr,  Prandtl number;

r, non-dimensional co-ordinate in radial
direction ;

Tos radius of the cylinder;

R, radial co-ordinate defined by (8);

Re, Reynolds number;

t, non-dimensional temperature ;

t, temperature ;

T, non-dimensional time;

T,, temperature on the surface;

T,, temperature at infinity;

Ly temperature in the inner region,
equation (18);

T,,  temperature in the outer region,
equation (19);

u, non-dimensional velocity in r direction ;

u, velocity in r direction;

U, free stream velocity;

v, non-dimensional velocity in 8 direction;

v, velocity in @ direction.

Greek symbols

o, constant defined by (3);

g, small parameter defined by (3);

n, variable defined by (12);

0, co-ordinate in tangential direction;

v, kinematic viscosity ;

g, variable defined by (42);

T, non-dimensional time;

T, time;

Tos characteristic time ;

¥, non-dimensional stream function ;

i stream function in the inner region,
equation (6);

¢%,  stream function in the outer region,
equation (7).

INTRODUCTION

THE PROBLEM of transient flow past an impulsively
started circular cylinder has been studied by many
authors. Blasius [1], Goldstein and Rosenhead [2],
Schuh [3], Wundt [4], and Watson [5] have
obtained short-time solutions in the limiting case of
infinite Reynolds number. Wang (6], Collins and
Dennis [7], and Bar-Lev and Yang [8] have
extended the works to finite but large Reynolds
number. Wang, applying the method of matched
asymptotic expansions, obtained the series solution
in powers of the normalized time up to the second
term. Collins and Dennis, using a different for-
mulation from that of Wang, obtained the series
solution up to the seventh term, in which only the
first approximations were derived analytically and
the succeeding were computed numerically. Bar-Lev
and Yang extended the work of Wang to the third
order. Their formulation consists of only one
governing nonlinear equation, that of vorticity; the
troublesome pressure field is therefore eliminated.
Their results agree well with those of Collins and
Dennis. Many authors also gave numerical solutions
of the Navier—Stokes equations.

The extensions of the above flow problem to
transient heat transfer problems, however, have little
attention in the literature. Recently, Jain and Goel
[9] approached a heat-transfer problem numerically.
They investigated the case in which unsteady
thermal field is produced by sudden imposition of a
constant temperature difference between the body
and the fluid as the impulsive motion is strated and
gave the numerical solutions for Pr (Prandtl num-
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ber) = 0.73, Re (Reynolds number) = 50 and 100. However, short-time results for T < 1, T being the normalized
time, are not given there.

The present paper reconsider this problem analytically, giving a short-time solution by extending the analysis of
Bar-Lev and Yang for the velocity field. The results obtained in the present paper should be valid for any Prandtl
number, Re > 100and T < 1.

FORMULATION OF THE PROBLEM
Consider an unsteady flow of a viscous incompressible fluid past a circular cylinder of radius r, which is
started impulsively from rest at time v = 0 and subsequently moves with a constant velocity U in the
direction of 6 = 0. Using the polar co-ordinate (r, 8} with origin at the center of the cylinder, the governing
equation for the velocity field can be written in non-dimensional form as [8]

o efow o waN L o,
—_ —— — - —— —} — = 1
[61+r<6r 20 aear) AV |V =0, M

where non-dimensional time 7 is referred to an arbitrary characteristic time 1,, radial co-ordinate r to ry, the
stream function ¢ to r U, and
v? 62“_16+162 @)
ot ror r? e’
e = Uty/ry, a=(eRe)™!, 3)

Re being the Reynolds number equal to Ur,/v (v; kinematic viscosity). For the initial phase of the flow, ¢ is a
small quantity. The stream function y is related to non-dimensional velocities u = u'/U and v = ¢v'/U, «' and
v’ being velocity components in r and 8 directions respectively, by the relations

10y oy
U= — ; %, U= —é-r‘ (4)
The initial and boundary conditions for  are
<0 ¥ =0,
=y =0 =1
£>0 {w tﬁr' at r=1, ()
Yy —rsinf as r— 0.

Bar-Lev and Yang, assuming the Reynolds number to be large such that « is finite, obtained the solution
for the initial flow field by applying the method of matched asymptotic expansions with ¢ as a small
parameter. The method of solution is as follows. The velocity field is divided into two regions; one is the
inner region close to the cylinder and the other is the outer region far from it. Separate, locally valid, expansions of
the stream function are developed for these two regions. These “inner” and “outer” expansions are, respectively,
assumed to be of the forms

¥ =i (R, 0, 7)+ W5 (R, 6, 1)+ W4(R, 0, T) +. .., (6)
and
v =yr 6, 1) +efd(r, 0, 1) +eX3(r, 0, 1) +..., 7
where
R = (r—1)/e. (8)

Substitution of these expansions into (1) yields a set of equations for W and 2. These equations can be
successively solved by applying the matching condition that the two expansions must agree in the
overlapping domain where both expansions are valid, as well as the physical boundary conditions (5). The
final results thus obtained are as follows [8]:
¥ = (r—r~1)sin 8 —[4/(n)"/*}(T/Re)"/*r~*sin 0 — (T/Re)r~ ' sin 6
+8n~1/2[8/3(2)/2~4/9n — 1] T(T/Re)**r ?sinfcos 6 + ..., )

in the outer region and
¥ = 4(T/Re)V*{nerfn—n~?[1—exp(—n*)]} sin0+4n~'/*(T/Re)A sin 8

+8T(T/Re)**Bsinfcosf+...,  (10)
in the inner region, where
T = ¢t = Ut'/ro, 11
7’ being the dimensional time,
n = R/[2(x1)""?], (12)

A = —n? 42— (14?/4)(1 —erfcn) + (3n1/2/2)n? erfen — (3/2)n exp(—1n?) (13)
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B-=(11/6n"/2)exp(~n?)erfcn —[8/3(2n)/?] exfc(2'/2y)
+(1/3)° exfe? n— (/3722 ? exp(—~n?)erfc n + (1/3n)n exp(—2n?)
—(1/2)nerfc’ n+(4/9n—3/2)n~ V2 exp(—n?)
— (1 +4/9m)p erfcn + (1 +4/9m)n~ 2n? exp(—n?) + (2/3n?)erfe n
+(1/2—=2/3n)nerfcn+[8/3(2)"/> —4/9n—1]n~ /2, (14)
It is to be noted that outer flow is irrotational to all orders of ¢. These solutions should be valid for T < 1, Re
> 100, and may be stretched to T = 1 for higher Reynolds number [8].

In order to solve the energy equation for the temperature field, we shall use the procedure similar to that
just described. The energy equation can be written as

é efoy 8 oo o,
[§+;(555_605> PR (13)
where
t=({~THT,~-T,), (16)

t’ being the dimensional temperature and T, T, the temperatures on the surface and at infinity, respectively.
We assume that the cylinder and the fluid are initially at the same temperature and, as the impulsive motion
is started, a constant temperature difference between the cylinder and the fluid is suddenly imposed. Then, the
initial and the boundary conditions for ¢t may be written as

<0 t=0,
{t=l at r=1, 17)
20
t=-0 as r— .
The inner and outer expansions are, respectively, assumed to be of the forms as
t=t,(R,0,7)+et,(R, 0, 1) +e%t3(R, 6, T) +..., (18)
and
t="T,0,0,7)+eTy(r,0, 1)+ T5(r, 6, ) +.... (19)

Substituting (18) into (15), using the solution of Bar-Lev and Yang for y, and collecting the various powers of
¢, the following set of equations for ¢,’s may be obtained.

tlt_Pr—lathR = 0’ (20)
tr—Protatype = Protat, g+ Yot~ ¥irties 21)

tsc—Prlatygr = Prola(t,g — Rty g +ti00) —Whrtio—Virtae
+¥iot2r +Whetin+ RWirt1o—Viotin)- 22)

Similarly, substitution of (19) into (15) yields a set of the equations for T,’s. It is easy to show that the
solutions of the resulting equations for T, are

7,=0 foralln, 23)
so that the matching condition for the inner expansion (18) may be written as

t,(R, 0, 1) — O(exponentially) as R — oo. (24)

CONSTRUCTION OF THE SOLUTION
The solution of (20) subject to the boundary condition on the surface and the matching condition (24) is’

t, = erfc(Pr'/?y), (25)
where n is given by (12). Substituting this into (21), we have

ty.— Prtat,gp = —(Prin) 3(Pr='(a/7)"? +4{nerfy —n~ Y2[1 —exp(—n*)]} cos B) exp(~ Pry?). (26)
By putting
t, = (at)!%f, () + g, (n) cos b, @7
(26) becomes
s +2Pmf, —2Prf, = 4(Pr/n)'/2 exp(— Pry?), (28)

93 +2Prng,—4Prg, = 16(Pr/n)"/*Pr{nerfn—n~"2[1—exp(~n?)]} x exp(— Pry?), 29)
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where prime denotes differentiation with respect to 5. The required solutions of these equations are

f, = —nerfc(Pri'iy). 1301
and
g, = —[4/mQ2m) ' F][Pr''3(Pr+5/3)—(Pr+ 1P arctgPr~ V2]
x Hip[(2Pry 2} —n~ Y(Pr+ 1) arctgPr QP2 + 1)

+ (Pr”z/n)Lr’”(Pr2 +2Pr—1)pexp(— Prp*)erfy
+{Pr—1yexp] — (Pr+ D)n*] + (8/3)exp{ — Pry*)

"
+ 72 Pr 4+ 122Pm? + 1 }f exp(— Prp¥)erfn dn], (3
0

where Hh, (x) is a function given by [10]

T o " * (g —x )

j ;'—'exp{~%(t+x)2}dt= ( ) exp(—1u?)du for naninteger > 0, (32)
Hhx)=+<°° " Jx

(= 1) Yd/dx)"" 'exp{—3x?) for nanegative integer, (33)

and satisfies the equation d?y/dx? 4+ x-dy/dx —ny = 0.
Substitution of {25}, (30), and (31) into (22) yields the following equation for 5.
ty.— Pr™latygp = 2Pr 'afy(n) + [20/(nPr)!* ]y exp(— Pry?)
+an) 2 ((1/2Pr)gym) +2{nexfy—n~ '2[1—exp(—n?)]}
x [f2(n) +4(Pr/m)* *nexp(— Prm?)] — [4(Pr)'/?/n] exp(~ Prn?) A) cos O
+1(2g,tperfysin? 0+ 2{nerfy—n~V2[1 —exp(~n*1] 1 ghtn)cos? 8
—8&(Pr/n)? exp(— Pry?)B cos 26). {34)
By putting

ty = atfs )+ t(x) 2y () cos B+ 12h; (n), (3%
(34) becomes

f3+2Prfi~4Prfy = 2Q/n) > 2Hh,[(2Pr)" 2] = 2P Hho[(2Pr) 2] = 2Hh_,[2Pr) 23]}, (36)

g5 +2Prngs —6Prg; = ~2g5(n}+8Pr! —nerfn+n~'2[1 —exp(—n*)])
x [ f3n)+4Pr/z) nexp{— Prp®)] + [ 16 Pr(Pr}'/2/a] exp( — Pry?) A, (37

Wi+ 2Prnhy —8Prhy = —8Pr[ [g,(n) exfn+4(Pr/n)2Bexp(— Pry?)] sin? 0
+ ({nerfn—n =121 —exp(—n*)]} g5 () —4(Pr/n) ' Bexp(— Pri*))cos? 0], (38)

The solution of (36} is

fy = [@/m)3/Pr]{Hh,[(2Pr)"2n] — (1/2)Hho[(2Pr)" *n] + (3/4)Hh _ , [ (2Pr) ' 3y] )
= erfc(Pr/2n)+ [172(nPr)* ¥ exp(~ Pro?). (39)

The solution of (37) is also obtained, but its detailed expression is too lengthy to be reproduced here and is
omitted. Only the surface derivative, g4 (0). will be shown in the next section.

In theory, an exact solution for h, can be found but it is too complicated to obtain it. It is, however, easy to
obtain asymptotic solutions of h; for large and small Prandt] numbers. Since the surface heat transfer is of
greater practical importance than the fluid temperature, attention is given here only to the calculation of

5(0). Tt is easily shown that 13 (0) is given by

L0y = ~[8(2)12 /()] f | Rin. 8yexp(Pry*)Hh,[(2Pr)!?n]dy, (40)
4]

where R(n,0) denotes the right side of (38). We first consider the case of Pr— 0. By introducing a new
variable

&= Priily, 410
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and expanding the integrand in (40) in terms of Pr'/? with ¢ fixed, we can show that 5 (0) is expressed as

1 64 16 64 64 .
h3(0) = — ————<{4nPr'? + —19-16(2)"* +— [Pr+—Pri + — Pr* + } sin® 0
3n(m)l? 3n |

15 3 15
1 11 4Q2 4 2 s
— ——— = {nPrt?—-256] — — —— |Pr+1024| — — — |Pr?
30 {" r [40 15 tasg | TN g, st
N, s12/4 1 2, S12f4 1 1
S22 e _2pp 220 pe % 29, 42
3r+3<37r 4>r 15r+15<3n 4>r+/C°S “2)

This solution is valid for small Prandtl number fluids such as liquid metals. For Pr — co, on the other hand,
expanding the integrand in (40) in terms of Pr~1/? with ¢ fixed, we can finally obtain the following equation
for h4(0),

128 [ 2 4\ 1/19 © R 41 2
’ =—" | =(1 oV ——|pP -1/2 _ = —|\P -1
R 0) = o [105( +3n)+3<96 4 45n> ’ +315<6+9n> ’
33 992 4 1 2
- P -3/2_ |4 P -2
+<160 1575n> § 10395 <2+3n:) ’
581 18112 128 2 4\
= _ Pro2q sin? 04+ ——=| - | 1+ —
+<1440 14175n> ro }Sm +7c(n)”z[ 105( +3n)
1/ 32 33 4 /1 2 1 (16141 1504
I e g o P—1/2___ _ - P—l - P—3/2
+6( 25n+80+32> " 315(6+9n) ’ +315( 512 157r> "

4 1 2 121 8912
S ) VA S e Prs2 4. |cos?0. 4
* 10395 (2+3n) " +<84O 19845n> roE ]“’s : “3)

For moderate values of Pr, the calculation of h3(0) is performed numerically and the results are shown in
tabular form in Table 1 together with the numerical data evaluated from (42) and (43). It is seen from the
Table that the expansion for large Pr, (43), is valid for Pr > §.

DISCUSSION
We can now obtain the expression for the surface heat transfer from the solutions just obtained. Defining
the local Nusselt number Nu as Nu = hr,/k, where h is the heat-transfer coefficient [ = — (k/ro}(ét/0r),- ],
then we have
Nu = (Pe/TY " 3{1/(m)"* + (12)(T/Pe)*? + [2/m(n) " *][(Pr+1)* arctgPr— /2
— (Pr)"*(Pr+5/3)] Tcos —[1/4(n)' *|(T/Pe) — (1/2)g5(0)[ T(T/Pe)"/*] cos 6
—[12(Pr)' 2R3 (0)T? ...}, (44)
where

(Pr'/2/30m)(300Pr® +230Pr® — 410Pr* — 1639Pr> — 281Pr2 +477Pr
~197)/(1 — Pr)(5Pr®+3Pr* + 1)+ (Pr+1)*(20Pr> — 18 Pr* — 8 Pr® — 5Pr?
g5(0) = < 420Pr~—S5)arctg Pr~Y22n(Pr—1)(5Pr* 4 3Pr? +1)
+(1/2)@Pr' /(1 —Pr)+1/n'?=3/2) for Pr# 1, (45)
—3/44+8/5n+1/27"% for Pr=1, 46)

Table 1. Numerical values of h(0)*

and h3(0) is given by (42), (43), and Table 1. The

square-root singularity in time in (44) is obviously

Pr  Numerical Asymptotic Numerical Asymptotic ~ due to a discontinuity in the temperature existing on
sol. sol. sol. sol. the surface at T = 0.

The local Nusselt number distributions around the

cylinder at Re =100, 1000, and oo are shown

H,(Pr) H,(Pr)

001 -0.0312 ~0.0312 —0.0449 —0.0449

0.1 —0.0375 —0.115 . . .

0.7 0.134 0287 graphically in Figs. 1(a)-(c) for Pr = 0.1, 0.7, and 10.

0.73 0.139 -0.292 It is seen that at early times the Nusselt number

; g;g; 82 -0.324 decreases monotonously from the front stagnation
. . —0.463 —0.462 i i ini

10 0.447 0447 0,506 0,506 point and takes its minimum value at the rear

stagnation point, but that, except for the case of Pr
*H,(Pr) and H,(Pr) are related to h,(0) by ,(0) = 0.1, the point of minimum Nusselt number (0
= H,(Pr)sin? + H,(Pr)cos? . = 6,.) moves upstream in due time and the Nusselt
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number begins to increase at this point. This increase
in Nusselt number may be considered to be closely
related to the phenomena of flow separation,
According to Bar-Lev and Yang, scparations start at
some values of T between about (.32 and 0.4 and
back flow occurs in the separated region. Like the
point of minimum Nusselt number, the separation
point (=6, is first at ¢ =180° and moves
upstreamn in due time. In Fig. 2, we compare the
progressions with time of 8, and 8,. It is seen from
the figure that the influence of the Reynolds number

{a)

T -

20

.

Nu / Pa*®

TakA0 SaNo

on 8, is much smaller than that on 6,. The influence
of the Prandt! number on 0, on the other hand, is
much larger than that of the Reynolds number; 0,
shifts upstream with the increase of Pr, tending
asymptotically to a constant value depending on T
and Re. This suggests that the effect of flow
separation on heat transfer is stronger for larger
values of Pr. It is interesting to note that, above
some critical value of Pr (depending on Re), the
increase in Nusselt number can be observed before
flow separaigs and, after flow separation oceurs, the

1000




Short-time solution for unsteady forced convection heat transfer

1511
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Pr=10
- R e s e e
T=01
—-——— Re =i00
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E—— o
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05— T=a
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o} a4 /2 3n/4 "
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FiG. 1. Local Nusselt number distributions.
100°—
Re= o0 }poim of minimum
— - — Re= 100 Nusselt number (8,
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o7 ee
- 0
. 7 Re,\0//
~
7~
-
o’ i
- 140%—
mu //
160°1—
180° I i )
] 06 o8

FI1G. 2. Progressions with time of 6_ and 8,.

increase of Nu begins in the unseparated region in
front of the separation point. With the decrease of
the Prandtl number, the effect of separation on heat
transfer becomes small, that is, the increase in Nu
occurs after flow separates and the point of mini-
mum Nusselt number becomes to exist within the
separated region. For Pr = 0.1, the increase of Nu
cannot be observed in the range T < 1, as can be
seen from Fig. 1. The reason why the effect of flow

separation on heat transfer is small for low Prandtl
number fluids may be explained as follows. For T
< 1, the thickness of the back flow region is very
thin [11] and hence, when Pr is very small, this
region is confined to a very thin layer at the bottom
of the thermal boundary layer because of the high
thermal conductivity of the fluid. Therefore, the
existence of the back flow region have little influence
on heat transfer.



1512
2.0
15—
g
& 9
~N
3 O
z s
Present resuits
0 5p— . Merk's method
1 l 1 )
0 2 4 6 8 10
/T

F1G. 3. Variation in local Nusselt number at the stagnation
point for Re — o0.

Pr=073, Re=I00

Present result

Nu

Jain and Goel

| 1

[¢] 2 4

P 1 ]
3 8
/T

FiG. 4. Comparison of the present results for the local
Nusselt number with those of Jain and Goel at Pr =0.73
and Re = 100.

TAKAO SANO

For comparison, the steady-state results for Re
— o calculated by Merk’s method [12], which is
one of the most reliable methods for calculating
steady heat transfer through laminar boundary layer,
are also shown in Fig. 1 in the range from stagnation
point to separation point. In applying Merk’s
method, the velocity distribution outside the boun-
dary layer was taken to be [13]

U,/U = 3.640(x'/D)—3.20(x'/D)*. 47)

It seems from the comparison that in all cases, the
present results up to T = 0.6 approach smoothly the
steady-state curves, but that, except for the case of
Pr = 10, the results for T =1 is not reliable. This
can be seen more clearly in Fig. 3, in which the local
Nusselt number results are plotted as a function of
time for § = 0 together with the steady-state results.
It is seen that as the value of Pr becomes larger, the
present results approach the steady-state values
more smoothly, suggesting that the convergency of
the expansion (44) becomes better for larger values
of Pr. In Fig. 4, the present results for T < 1 are
compared at Pr=0.73 and Re = 100 with the
numerical results of Jain and Goel for T > 1.

For the finite values of Pr, there exist no available
data of the local Nusselt number for T < 1 to be
compared with the present results. Only at T = 1, for
which the expansion (44) is not expected to be valid,
we can compare the present result with that of Jain
and Goel at Pr=10.73 and Re = 100. The com-
parison is shown in Fig. 5: the agreement is not
satisfactory. In the limit of Pr— 0, on the other
hand, there exists, for Pe — oo, an analytical calcu-
lation to be compared with the present result. The
calculation has been made by the present writer [ 14]
using a- potential flow approximation. It is well
known that this approximation is valid for Pr — 0 in
the unseparated region from forward stagnation
point to separation point. For T < 1 (and Pr — 0),
however, the potential flow approximation is valid in
the separated region also, since the back flow region
is so thin for T < 1 that the region is confined to a
very thin layer at the bottom of the thermal layer
when Pr is small, as is stated before, and the velocity
field in the thermal layer may be essentially
expressed by the inviscid flow. Thus, for Pr— 0 and
T < 1, it can be said that the velocity in the thermal
boundary layer may be reasonably expressed by the
inviscid flow outside the momentum layer over the
whole region from forward to rear stagnation point.
For Re — o0, the displacgment effect of the inner flow
is negligible, so that the velocity distribution of the
inviscid flow is that around a circular cylinder of unit
radius. For this velocity distribution, the present
writer gave an analytical solution of the energy
equation assuming the infinite Peclet number. Com-
parison of the present results for Pr — 0 and Pe — oo
with those from the inviscid theory is shown in Figs.
6 and 7 together with the steady-state results by
Merk’s method. For T <04, excellent agreement
may be found between the present and the inviscid
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10
—— Pr«<0.73, Re=100
S~
\\\
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——~ ~
T~ o S
8 SO SQ S
3
z
— NNl Tmee— -
—--— — Present results
a— Jan and Gos!
| 1 1 ]
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8

F1G. 5. Comparison of the present result for the local Nusselt number distribution with that of Jain and
Goel at T =1, Pr = 0.73, and Re = 100.

20

Nu 7 Pe'/?

Pr—= 0, Pg~=

T‘O/

——— — Present results

———— Inviscid theory

r/2 3n/d 14

FiG. 6. Comparison of the present results for Pr — 0 with those of inviscid theory.

results. For T > 0.6, the difference between them
rapidly increases, especially on the front side of the
cylinder.

For engineering applications, we are often con-
cerned with the ratio of the instantaneous wall flux
to its steady value, i.e. Nu/Nu,, where Nu, denotes
the steady value of Nu. There are, however, no
reliable methods for predicting Nu, at an arbitrary

point around a circular cylinder. Only in the
upstream region of the cylinder where no separation
occurs, we can calculate Nu, for Re— o with
sufficient accuracy by using Merk’s method men-
tioned earlier. Therefore, the calculations of the ratio
Nu/Nu, have been made only for Re — o0 and only
in the upstream region of the cylinder. The results for
@ = 0 and n/4 are shown in Fig. 8. It is seen from the
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Nu/Pe?

Present results

Inviscid theory

. Merk's method

/7T

Fi1G. 7. Comparison of the present results for Pr—0 with
those of inviscid theory.

TakAO SANO

figure that the response time of heat transfer
increases monotonically with increasing Prandtl
number.

Finally, we shall calculate the mean Nusselt
number averaged over the surface of the cylinder; i.e’

Nu = (l/n)f Nudé.

0

(48)

Using (44), the expression for Nu may be written as

Nu = (Pe/T)V2{1/(r)""2 + (1/2)(T/Pe)'2
—[1/4(m)"/2)(T/Pe)
—[1/4(Pr) TRy (0) T2 +...).  (49)

Figure 9 shows the resulting curves of Nu plotted as
a function of T at Pr = 0.7 and 10, respectively, for
parametric values of Re and Fig. 10 shows those at
Re = oo for parametric values of Pr. In Fig. 10, the
result of the inviscid theory is also included for
comparison.

CONCLUSION

The analysis of Bar-Lev and Yang for the problem
of transient flow past an impulsively started circular
cylinder is extended to analyse a transient tempera-
ture field which is produced by sudden imposition of
a constant temperature difference between the cylin-
der and the fluid as the impulsive motion is started.

04 016 o8

F1G. 8. Variation in the ratio Nu/Nu,.
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F1G. 9. Variation in the mean Nusselt number.
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The main results obtained in this paper may be
written as follows. )

(1) The local Nusselt number and the mean
Nusselt number averaged over the surface of the
cylinder are given by (44) and (49), respectively, and
their convergences become better for larger values of
Pr.

(2) At early times after the impulsive start, the
local Nusselt number along the surface decreases
monotonously from the front stagnation point and
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takes its minimum value at the rear stagnation point.
Except for the case of small Prandtl number, the
point of minimum Nusselt number moves upstream
in due time and the Nusselt number begins to
increase at this point. This increase in Nu is more
noticeable for larger values of Pr. For sufficiently
small Prandtl number fluids, such an increase is not
found for T < 1.

(3) Since the above increase in Nusselt number
may be considered to be closely related to flow
separation, comparison is made of the progression
with time of the point of minimum Nusselt number
and the point of separation. It is found that above
some critical Prandtl number, the increase in Nu
occurs before flow separates and after flow sepa-
ration occurs, the increase in Nu begins in the
unseparated region in front of the separation point.
For smaller values of Pr, on the other hand, the
increase in Nu begins after flow separates and the
minimum Nusselt number takes place somewhere
between the separation point and the rear stagnation
point.

(4) The larger the Prandtl number is, the longer
the response time of heat transfer is.

REFERENCES

1. H. Blasius, Grenzschichten in Fliissigkeiten mit kleiner
Reibung, Z. Angew Math. Phys. 56, 1(1908).

2. S.Goldsteinand L. Rosenhead, Boundary layer growth,
Proc. Camb. Phil. Soc. 32, 392 (1936).

3. H. Schuh, Calculations of unsteady boundary layers in
two-dimensional laminar flow, Z. Flugwiss. 1, 122
(1953).

4. H. Wundt, Wachstum der laminaren Grenzschicht an
Schrig angestromten Zylindern bei Anfahrt aus der
Ruhe, Ing.-Arch. 23, 212 (1955).

5. E. Watson, Boundary-layer growth, Proc. R. Soc. A231,
104 (1955).

6. C. Y. Wang, The flow past a circular cylinder which is
started impulstvely from rest, J. Math. Phys. 46, 195
(1967).

7. W. M. Collins and S. C. R. Dennis, The initial flow
past an impulsively started circular cylinder, Q. JI
Mech. Appl. Math. 26, 53 (1973).

8. M. Bar-Lev and H. T. Yang, Initial flow field over an
impulsively started circular cylinder, J. Fluid Mech.
72, 625 (1975).

9. P. C. Jain and B. S. Goel, A numerical study of
unsteady laminar forced convection from a circular
cylinder, J. Heat Transfer 98, 303 (1976).

10. H. Jeffreys and B. Jeffreys, Methods of Mathematical
Physics. Cambridge University Press, Cambridge
(1966).

11. D. C. Thoman and A. A. Szewczyk, Time-dependent
viscous flow over a circular cylinder, Physics Fluids,
Supp. 11 12, 76 (1969).

12. H. J. Merk, Rapid calculations for boundary layer
transfer using wedge solutions and asymptotic
expansions, J. Fluid Mech. §, 460 (1957).

13. H. H. Sogin and U.S. Subramanian, Local mass
transfer from circular cylinders in cross flow, J. Heat
Transfer 83, 483 (1961).

14. T. Sano, Unsteady heat transfer from a circular cylinder
immersed in a Darcy’s flow, to be published.



1516

Takao SANO

SOLUTION DE TEMPS BREF POUR LA CONVECTION THERMIQUE
FORCEE ET INSTATIONNAIRE AUTOUR D'UN CYLINDRE
CIRCULAIRE EN MOUVEMENT IMPULSIONNEL

Résumé—On présente une solution de temps bref pour le transfert thermique instationnaire d’un cylindre

circulaire en mouvement impulsionnel. On considére le cas ol le champ de température variable est

produit par l'imposition d’une différence de température constante entre le corps et le fluide lorsque le

mouvement impulsionnel est déclanché. La présente théorie serait valable pour un nombre de Prandtl

quelconque et pour un nombre de Reynolds supérieur a 100. Les nombres de Nusselt obtenus sont
comparés avec ceux déja connus numeériquement ou théoriquement.

KURZZEIT-LOSUNG FUR INSTATIONARE WARMEUBERTRAGUNG
DURCH ERZWUNGENE KONVEKTION AN EINEM IMPULSARTIG
BEWEGTEN KREISZYLINDER

Zussmmenfassung—Es wird eine Kurzzeit-Losung fiir die instationdre Wanneubertragung an einem

impulsartig bewegten Kreiszylinder angegeben. Es wird der Fall betrachtet, bei dem ein instationiires

Temperaturfeld dadurch entsteht, daBl plotzlich ein konstanter Temperaturunterschied zwischen Korper

und Fluid aufgepriigt wird, sobald die impulsartige Bewegung beginnt. Die vorliegende Theorie miifite fiir

alle Prandti-Zahlen und fir Reynolds-Zahlen groBer als 100 giiltig sein. Die in Nusselt-Zahlen

ausgedriickten Ergebnisse werden mit den vorhandenen numerischen und theoretischen Werten
verglichen.

PEIUEHUE 3AJJAYHU O HECTALUMOHAPHOM TEMNJIOOBMEHE IMPU BbIHYXKJIEHHOM
KOHBEKLIMU OT KPYINOro UMiaivHiAPA, UMNYJILCHO NPMBEIEHHOIO
B JBUXKEHHE

AnnoTagup — ITpencrapneso pelieHHE 3a0auH HECTALHOHAPHOTO TeNnooGMeNa KpYrioro UMIHHADA,

UMMYALCHO NPHBEACHHOTO B asuxeHue. Paccmarpusaetcs ciyyad, KOra HECTAUMOHAPHOE TeM-

nepaTypHoe none o0pa3yeTcs NpH BHEIANHOM HAIOKEHWM TNOCTOAHHON DPa3HOCTH TemnepaTyp

MEXKAY UHIMHAPOM U KHOKOCTHIO B MOMEHT Hauyasia MMNYJILCHOTO aBMXeHua uunuuapa. [Mpuse-

NEHHbIE TEOPETUYECKHE AaHHblE CNpareiInBbl ans mobbix yucen NMpannrng u yncen Peiivonbaca,

6onbinx 100. Monyyennbie uucna Hyccenbra CPABHYPRIOTCA C HUMEIOWNMHUCA YUCIEHHBIMH |
TEOPETHYECKHMM PE3yRbTaTaMu.



