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Abstract-Short-time solution for unsteady heat transfer from an impulsively started circular cylinder is 
presented. Consideration is given to the case where unsteady temperature field is produced by the sudden 
imposition of a constant temperature difference between the body and the fluid as the impulsive motion is 
started. The present theory should be valid for any Prandtl number and for any Reynolds number larger 
than about 100. The Nusselt number results obtained are compared with the available numerical and 

theoretical ones. 

NOMENCLATURE 

h, heat-transfer coefficient; 

Hi, Hz, functions defined by (53); 

k, 
Nu, 
Nu, 
Pe, 
pr, 
r, 

To9 
R 
Re, 
4 
t’, 
T, 
T WI 

T ceo) 
t “9 

T,, 

U, 

U’, 
u, 
V, 

VT, 

thermal conductivity; 
local Nusselt number ; 

mean Nusselt number; 
Peclet number ; 
Prandtl number ; 
non-dimensional co-ordinate in radial 
direction ; 
radius of the cylinder ; 
radial co-ordinate defined by (8); 
Reynolds number ; 
non-dimensional temperature; 
temperature; 
nondimensional time; 
temperature on the surface; 
temperature at infinity; 
temperature in the inner region, 
equation (18); 
temperature in the outer region, 
equation (19); 
non-dimensional velocity in r direction ; 
velocity in r direction ; 
free stream velocity; 
non-dimensional velocity in 0 direction ; 
velocity in 0 direction. 

Greek symbols 

a, constant defined by (3); 

s, small parameter defined by (3); 

tlV variable defined by (12); 

0, co-ordinate in tangential direction ; 

V, kinematic viscosity ; 
59 variable defined by (42); 

7, non-dimensional time; 

7’7 time ; 

70, characteristic time ; 

!k non-dimensional stream function; 

Sk stream function in the inner region, 
equation (6); 

$1, stream function in the outer region, 
equation (7). 

INTRODUCTION 

THE PROBLEM of transient flow past an impulsively 
started circular cylinder has been studied by many 
authors. Blasius [l], Goldstein and Rosenhead [2), 
Schuh [3], Wundt [4], and Watson [S] have 
obtained short-time solutions in the limiting case of 
infinite Reynolds number. Wang [6], Collins and 
Dennis [7], and Bar-Lev and Yang [S] have 
extended the works to finite but large Reynolds 
number. Wang, applying the method of matched 
asymptotic expansions, obtained the series solution 
in powers of the normalized time up to the second 
term. Collins and Dennis, using a different for- 
mulation from that of Wang, obtained the series 
solution up to the seventh term, in which only the 
first approximations were derived analytically and 
the succeeding were computed numerically. Bar-Lev 
and Yang extended the work of Wang to the third 
order. Their formulation consists of only one 
governing nonlinear equation, that of vorticity ; the 
troublesome pressure field is therefore eliminated. 
Their results agree well with those of Collins and 
Dennis. Many authors also gave numerical solutions 
of the Navier-Stokes equations. 

The extensions of the above flow problem to 
transient heat transfer problems, however, have little 
attention in the literature. Recently, Jain and Goel 
[9] approached a heat-transfer problem numerically. 
They investigated the case in which unsteady 
thermal field is produced by sudden imposition of a 
constant temperature difference between the body 
and the fluid as the impulsive motion is strated and 
gave the numerical solutions for Pr (Prandtl num- 
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ber) = 0.73, Re (Reynolds number) = 50 and 100. However, short-time results for T c 1, T being the normalized 
time, are not given there. 

The present paper reconsider this problem analytically, giving a short-time solution by extending the analysis of 
Bar-Lev and Yang for the velocity field. The results obtained in the present paper should be valid for any Prandtl 
number, Re > 100 and T c 1. 

FORMULATION OF THE PROBLEM 

Consider an unsteady flow of a viscous incompressible fluid past a circular cylinder of radius r0 which is 
started impulsively from rest at time 7’ = 0 and subsequently moves with a constant velocity U in the 
direction of 8 = 0. Using the polar co-ordinate (I, 0) with origin at the center of the cylinder, the governing 
equation for the velocity field can be written in non-dimensional form as [S] 

a ~a$a 

[ ( +_ __-!!ta’ _&yv2 
Z r ar ae ae ar ) I V2$=(), (1) 

where non-dimensional time 7 is referred to an arbitrary characteristic time zO, radial co-ordinate r to r,,, the 
stream function I++ to r. U, and 

(2) 

E = UqJr,, a = (eRe)-‘, (3) 

Re being the Reynolds number equal to Ur,/v (v ; kinematic viscosity). For the initial phase of the flow, a is a 
small quantity. The stream function $ is related to non-dimensional velocities 11 = t//U and a = VI/U, U’ and 
v’ being velocity components in r and 0 directions respectively, by the relations 

1 ati ati a= ---) 
r ae v=r’ (4) 

The initial and boundary conditions for 1(1 are 

7<0 II, =0, 

720 
i 

II/ = t+b, =0 at r = 1, 

I 

(5) 
$+rsin8 as r-co. 

Bar-Lev and Yang, assuming the Reynolds number to be large such that tl is finite, obtained the solution 
for the initial flow field by applying the method of matched asymptotic expansions with E as a small 
parameter. The method of solution is as follows. The velocity field is divided into two regions ; one is the 
inner region close to thecylinder and the other is the outer region far from it. Separate, locally valid, expansions of 
the stream function are developed for these two regions. These “inner” and “outer” expansions are, respectively, 
assumed to be of the forms 

and 

J/ = a@, (R, 0,~) + &,b;(R, 0,~) + E~$;(R, 0,~) + . . , (6) 

where 

$ = $Y(r,e,z)+qb~(r, e,7)+c2@(r, e,7)+ . . . . 

R = (r-l)/&. 

(7) 

(8) 

Substitution of these expansions into (1) yields a set of equations for I#, and $f. These equations can be 
successively solved by applying the matching condition that the two expansions must agree in the 
overlapping domain where both expansions are valid, as well as the physical boundary conditions (5). The 
final results thus obtained are as follows [S] : 

t,b = (r-rr-1)sine-[4/(a)“2](T/Re)1’2r-1sinB-(T/Re)r-‘sinB 

+8n-1’2[8/3(2)1’2-4/9n-l]T(T/Re)1~Zr-2sinecos~+..., (9) 

in the outer region and 

tj =4(T/Re)“2(~erf~-n-1’2[1-exp(-~2)])sin8+4~:-”2(T/Re)Asine 

+8T(T/Re)‘j2Bsin 0~0s 0 +. . . , (10) 
in the inner region, where 

T = ET 3 Uz’/r,,, (11) 

7’ being the dimensional time, 
q = R/[~(uT)“~], (12) 

A = -~2+2~-(~1’2/4)(1 -erfcq)+ (3n1/2/2)r)2erfcr)-(3/2)qexp(-r)2) (13) 
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B~~,(11/6n”2)exp(-~2)erfc~-[8/3(2n)1’2]erfc(21’2r]) 

+(1/3)s3 erfc’q - (2/3~“‘)q’exp( --q2)erfcq + (1/37c)r]exp( -2~~) 

- (1/2)~ erfc’q + (4/9n -3/2)x- ‘I2 exp( -$) 

-(1+4/911)~3erfc~+(1+4/9n)n-1’2~2exp(-~2)+(2/3~1’2)erfc~ 

+(1/2-2/37c)~erfc~+[8/3(2)1’2-4/9~-1]7t-1i2. (14) 

It is to be noted that outer flow is irrotational to all orders of E. These solutions should be valid for T < 1, Re 
> f60, and may be stretched to T % 1 for higher Reynolds number [8]. 

In order to solve the energy equation for the temperature field, we shall use the procedure similar to that 
just described. The energy equation can be written as 

where 

t = (t’ - T, MT, - T, ), (16) 

t’ being the dimensional temperature and T,, T, the temperatures on the surface and at infinity, respectively. 
We assume that the cylinder and the fluid are initially at the same temperature and, as the impulsive motion 
is started, a constant temperature difference between the cylinder and the fluid is suddenly imposed. Then, the 
initial and the boundary conditions for t may be written as 

r<O t = 0, I 

1 t=l at r=l, I 
720 

t-0 as r-03. I 

(17) 

The inner and outer expansions are, respectively, assumed to be of the forms as 

t = tl(R,0,t)+st2(R,e,7)fs2t3(R,8,7)+ . . . . 

and 

(18) 

t = T,(r, 0, 7)+cT2(t, 0, 7)+~~T~(r, 8, 7)+ . . . . (19) 

Substituting (18) into (15), using the solution of Bar-Lev and Yang for $, and collecting the various powers of 
E, the following set of equations for t.‘s may be obtained. 

t,,-Pr-‘at,,, = 0, (20) 

t2r-Pr-1at2RR = Pr-latl,+~f,t,,-~‘,RtlB, (21) 

t,,-Pr-‘at,,, = Pr-‘a(~2r-RtlR+t10J-JliRt10-Ij/~Rt2t) 

+I(ltSt2R+l(lletlR+R(~:,t,,-l(l’l,t,R). (22) 

Similarly, substitution of (19) into (15) yields a set of the equations for T,,‘s. It is easy !o show that the 
solutions of the resulting equations for Tn are 

T. = 0 for all n, (23) 

so that the matching condition for the inner expansion (18) may be written as 

t,(R, 0,7) + O(exponentially) as R + 00. (24) 

CONSTRUCTION OF THE SOLU-k’ION 

The solution of (20) subject to the boundary condition on the surface and the matching condition (24) is’ 

t, = erfc(Pr’/2q), (25) 

where q is given by (12). Substituting this into (21), we have 

t2r - Pr- ‘at,,, = -(Pr/n)1~2(Pr~‘(a/z)‘~2+4{~erft]-n~’~2[1-exp(-~2)]}cosg)exp(-Pr~2). 

By putting 

t2 = (ar)“%(tl)+rg,(tl)cose, 

(26) becomes 

f;’ + 2Pn& - ZPrf, = 4(Pr/z)1’2 exp( - Prq2), 

gi+2Pqg;-4Prg, = 16(Pr/x)‘~2Pr{~erfr]-n-“2[1-exp(-q2)]~ xexp(-Pq2), 

(26) 

(27) 

(28) 

(29) 
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where prime denotes differentiation with respect to 9. The required solutions of these equations are 

fz = -rl erfc(Pr”‘q). 

and 

gz = - ~4/~(2n)‘~Z][Pr”z(Pr+5/3)-(Pr$ 1)2 arctgPr_“‘] 

~Hh,[(2Pr)“‘2q]-n~‘(Pr+1)2arctgPr~’~2(2Prr~2+1) 

f (Pr”‘/7r) ~“2(Pr2+2Pr- l)qexp( - Prn”)erf,I 
i 

(30) 

+(Pv-1)expl:-(PP+1)~2]+(8/3)exp(-P~t12) 

s 

‘I 
~n’~‘(Pr+1)Z~2Pry2+t) exp(-Pr$)erfqdn , 

0 1 

where IfIr, is a function given by [IO] 

/. 

l-u0 fl 

? 

Texp(-f(i+x)2jdt = r = (u-x)” 

H/?“(X) = O n 

___ expj -ftr’)du 
n! 

for n an integer > 0, 
*x 

( - 1 )“-‘(d/dx)-“- ’ expf --$x2) for n a negative integer, 

and satisfies the equation d2y,/dxz +X .dy,ldx - ny = 0. 

Substitution of (25), (30), and (31) into (22) yields the following equation for t3. 

t,,- Pr-‘at,,, = 2Pr- ‘C&(q) f [2a/(nPr)1’2]y exp( - Prq’) 

ft~~)*‘2((~i2Pvfg~(~)+2~qerf~-n~1~2[t-cxp(-~2)]~ 

X ~f;(rl)+4(PrlK)“‘7Iexp(- Pr$)] - [4(Pr)“2/~] exp( -Prq2)A)cosfl 

+~(2g,~r?)erfvlsin2N+2~~~erf~~-~-L”[1-exp(-~~2)]~y~(tl)cosz~ 

-~(Pr~~)1~2exp~-Pr~2)~co~Zff~. 

By putting 

(34) becomes 

g;‘+ 2Prqg; - 6Prg, = -2gb_(rl)+SPrt -~~erf~+z-1:2[1 -exp(-n2)]\ 

X [~~~~)+4~Pr/~)1~2~ exp( - Prq*)] + [16Pr(Pr)‘!‘/n] exp( - Pr$)A, 

k’; + 2Prqk; - 8Prk3 = - 8Pr [[g*(q) erf 1+4(Pr/x)‘!‘B exp( - Prq2)] sin” 0 

~~‘\~ierf~-~~1~2~l-exp(-~2)]~g~~~~f-4(Pr/~)1~2~exp(-Prq~))cos28]. 

The solution of (36) is 

f, = [(2/i7)“2/Pr] (Hk2[(2Pr)i’2r~] - (1/2)Nk,[(2Pr)“2~] + (3/4)Hh_ 2[(2Pr)1’iZq]1 

= erfc(Pr”‘q) + [ 1/2(nPr )r”]Q exp( - Pr$). 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(3%) 

(39) 

The solution of (37) is also obtained, but its detarled expression is too lengthy to be reproduced here and is 
omitted. Only the surface derivative. g>(O). will be shown in the next section. 

In theory, an exact solution for h3 can be found but it is too complicated to obtain it. It is, however, easy to 
obtain asymptotic solutions of h3 for large and small Prandtl numbers. Since the surface heat transfer is of 
greater practical importance than the fluid temperature, attention is given here only to the calculation of 
h; (0). It is easily shown that h;(O) is given by 

I 
=’ h;(O) = - [8(2)“‘2,/@)“2] R(q, t))exp(Prq2)Hk4[(2Pr)1i2r1] dg, (40) 

0 

where R(q, 0) denotes the right side of (38). We first consider the case of Pr -+ 0. By introducing a new 
variable 

< = Pr”‘tl. (41) 
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and expanding the integrand in (40) in terms of Pr”” with 5 fixed, we can show that h;(O) is expressed as 

hi(O) = - ~~aP~1~z+~[9-16(2)1~z+~]P~+~Pri+~Pr3+...jsin’0 
3n(n)“2 

- &{kPr”‘-256[$ -T + &]Pr+lo24(; - gi6jPr”‘” 

_ ; pr2 + y ; - f pr512 - 
C j 

;Pr’ +~~~-a)Pr7~2+...icos2B. (42) 

This solution is valid for small Prandtl number fluids such as liquid metals. For Pr + co, on the other hand, 
expanding the integrand in (40) in terms of Pr- liz with 5 fixed, we can finally obtain the following equation 
for h; (0), 

h; (0) = 

+(~-~jp~-312-~~~+~jpr-2 

( 
581 

+ 1440 - 14175n 
181Li_jp,-‘:i+...lsin2~+~~-~~~ +$j 

+t(-;+$+$ Pr-“2 
j 

-~(~+~jpr-l+J-(!!!!&!Ejpr-3~2 

+&(~+~jpr-~+(~-~jpr-~~2+...]cos”8. . (43) 

For moderate values of Pr, the calculation of h;(O) is performed numerically and the results are shown in 
tabular form in Table 1 together with the numerical data evaluated from (42) and (43). It is seen from the 
Table that the expansion for large Pr, (43) is valid for Pr 2 5. 

DISCUSSION 

We can now obtain the expression for the surface heat transfer from the solutions just obtained. Defining 
the local Nusselt number Nu as Nu = hr,/k, where h is the heat-transfer coefficient [ = - (k/r,)(&/irr),= J, 

then we have 

Nu = (Pe/T)“‘{ l/(rc)l” + (1/2)(T/Pe)1’2+[2/rr(n)1’2][(Pr+ l)‘arctgPr-‘I’ 

- (Pr)1’2(Pr+5/3)]Tcos~-[l/4(?r)i’2](T/Pe)-(l/2)g~(O)[T(T/Pe)”2]cos~ 

-[1/2(Pr)“2]h;(0)T2 +. .}, 

where 

s; (0) = 

I 

(Pr1’2/30~)(300Pr6+230Pr5-410Pr4-1639Pr3-281Pr2+477Pr 

- 197)/(1- Pr)(5Pr3 + 3Pr2 + 1) + (Pr + 1)‘(20Pr5 - 18Pr4 - 8Pr3 - 5Pr2 

+ 20Pr - 5) arctg Pr -1’2/2n(Pr- 1)(5Pr3 +3Pr2+ 1) 

+ (1/2)(4Pr”‘/(l -Pr)+ l/n”‘-33/2) for Pr # 1, (45) 

i - 3/4+8/5n -I- l/27?” for Pr = 1, (46) 

Table 1. Numerical values of h; (0)* 

H,W) H,(Pr) 

Pr Numerical Asymptotic Numerical Asymptotic 
sol. SOI. sol. sol. 

0.01 -0.0312 -0.0312 - 0.0449 - 0.0449 
0.1 -0.0375 -0.115 
0.7 0.134 - 0.287 
0.73 0.139 -0.292 
1 0.181 -0.324 
5 0.382 0.382 - 0.463 - 0.462 

10 0.447 0.447 -0.506 -0.506 

*H,(Pr) and H,(Pr) are related to h;(O) by h;(O) 
= H,(Pr)sin2B+H,(Pr)cos20. 

and h;(O) is given by (42), (43), and Table 1. The 
square-root singularity in time in (44) is obviously 
due to a discontinuity in the temperature existing on 
the surface at T = 0. 

The local Nusselt number distributions around the 
cylinder at Re = 100, 1000, and cc are shown 
graphically in Figs. l(a)-(c) for Pr = 0.1,0.7, and 10. 
It is seen that at early times the Nusselt number 
decreases monotonously from the front stagnation 
point and takes its minimum value at the rear 
stagnation point, but that, except for the case of Pr 

= 0.1, the point of minimum Nusselt number (0 
= 0,) moves upstream in due time and the Nusselt 



r510 TAKAO SANO 

number begins to increase at this point. This increase 
in Nusselt number may be considered to be closely 
related to the phenomena of flow separation, 
According to Bar-Lev and Yang, separations start at 
some values of 7’ between about 0.32 and 0.4 and 

back flow occurs in the separated region. Like the 
Point of minimum Nusselt number, the separation 
point (0 = 0,) is first at B = 180” and moves 

upstream in due time. In Fig. 2, we compare the 
progressions with time of Oe and 8,. It is seen from 
the figure that the influence of the Reynolds number 

on 8, is much smaller than that on 8,. The influence 

of the Prandtl number on 8,, on the other hand, is 
much larger than that of the Reynolds number; 0, 
shifts upstream with the increase of Pr, tending 
asymptotically to a constant value depending on T 

and Re. This suggests that the effect of flow 
separation on heat transfer is stronger for larger 
values of Pr. It is interesting to note that, above 

some critical value of Pr (depending on Re), the 

increase in Nusselt nurtlber can be observed before 
flow separates and, after flow separation occurs, the 

I ---- Re = 100 

c ---- Re = 100 

15 --- 1000 
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20- 
(c) 

Pr= IO 

T=O I 

1511 

05- T=w 
(Merk’s method) 

a/4 *f2 3s/4 

8 

FIG. 1. Local Nusselt number distributions. 

Nusselt number 

T 

FIG. 2. Progressions with time of 8, and 0,. 

increase of Nu begins in the unseparated region in separation on heat transfer is small for low Prandtl 

front of the separation point. With the decrease of number fluids may be explained as follows. For T 

the Prandtl number, the effect of separation on heat ,< 1, the thickness of the back flow region is very 

transfer becomes small, that is, the increase in Nu thin [l l] and hence, when Pr is very small, this 
occurs after flow separates and the point of mini- region is confined to a very thin layer at the bottom 
mum Nusselt number becomes to exist within the of the thermal boundary layer because of the high 

separated region. For Pr = 0.1, the increase of Nu thermal conductivity of the fluid. Therefore, the 
cannot be observed in the range T < 1, as can be existence of the back flow region have little influence 
seen from Fig. 1. The reason why the effect of flow on heat transfer. 
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- Present results 

. Mar k’s method 

I I I I I 
2 4 6 8 IO 

I/T 

FIG. 3. Variation in local Nusselt number at the stagnation 
point for Re -+ 00. 

Pr-073. Re= 100 

Jacn and Goel 

I I I I I 
0 2 4 6 6 IO 

I/T 

FIG. 4. &mpariso& of the present results for the local 
Nusaelt number with those of Jain and Gael at Pt = 0.73 

and Re = 100. 

For comparison, the steady-state results for Re 
-+ co calculated by Merk’s method [12], which is 
one of the most reliable methods for calculating 
steady heat transfer through laminar boundary layer, 
are also shown in Fig. 1 in the range from stagnation 
point to separation point. In applying Merk’s 
method, the velocity distribution outside the boun- 
dary layer was taken to be [ 131 

U,/U = 3.640(x1/D) - 3.20(~‘/0)~. (47) 

It seems from the comparison that in all cases, the 
present results up to T = 0.6 approach smoothly the 
steady-state curves, but that, except for the case of 
Pr = 10, the results for T = 1 is not reliable. This 
can be seen more clearly in Fig. 3, in which the local 
Nusselt number results are plotted as a function of 
time for 0 = 0 together with the steady-state results. 
It is seen that as the value of Pr becomes larger, the 
present results approach the steady-state values 
more smoothly, suggesting that the convergency of 
the expansion (44) becomes better for larger values 
of Pr. In Fig. 4, the present results for T < 1 are 
compared at Pr = 0.73 and Re = 100 with the 
numerical results of Jain and Goel for T 2 1. 

For the finite values of Pr, there exist no available 
data of the local Nusselt number for T < 1 to be 
compared with the present results. Only at T = 1, for 
which the expansion (44) is not expected to be valid, 
we can compare the present result with that of Jain 
and Goel at Pr = 0.73 and Re = 100. The com- 
parison is shown in Fig. 5; the agreement is not 
satisfactory. In the limit of Pr -+O, on the other 
hand, there exists, for Pe + co, an analytical calcu- 
lation to be compared with the present result. The 
calculation has been made by the present writer [ 141 
using a. #otential flow approximation. It is well 
known.that this approximation is valid for Pr -+ 0 in 
the unseparated region from forward stagnation 
point to separation point. For T < 1 (and Pr -+ 0), 
however, the potential flow approximation is valid in 
the separated region also, since the back flow region 
is so thin for T < 1 that the region is confined to a 
very thin layer at the bottom of the thermal layer 
when Pr is small, as is stated before, and the velocity 
field in the thermal layer may be essentially 
expressed by the inviscid flow. Thus, for Pr --) 0 and 
T < 1, it can be said that the velocity in the thermal 
boundary layer may be reasonably expressed by the 
inviscid flow outside the momentum layer over the 
whole region from forward to rear stagnation point. 
For Re --+ 00, the displwcment effect of the inner flow 
is negligible, so that the velocity distribution of the 
inviscid flow is that around a circular cylinder of unit 
radius. For this velo& distribution, the present 
writer gave an analytical solution of the energy 
equation assuming the infinite Peclet number. Com- 
parison of the present results for Pr + 0 and Pe --t co 
with those from the inviscid theory is shoyvn in Figs. 
6 and 7 together with the steady-state..results by 
Merk’s method. For T < 0.4, excellent ilgreement 
may be found between the present and the, inviscid 
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'Or- 
Pr 8 0.73 Re = , 100 

--- - Present results 

4- - Jam and Goal 

1 I I I I 
0 714 n/2 3Pq I 

8 

FIG. 5. Comparison of the present result for the local Nusselt number distribution with that of Jain and 
Goel at T = 1, Pr = 0.73, and Re =i 100. 

- -- - Present rasults 

- Inviscid theory 

8 

FIG. 6. CodqWison of the present results for Pr 4 0 with those of inviscid theory. 

results. For T > 0.6, the difference between them 
rapidly increases, especially on the front side of the 
cylinder. 

For engineering applications, we are often con- 
cerned with the ratio of the instantaneous wall flux 
to its steady value, i.e. Nu/Nu,, where Nu, denotes 
the steady value of Nu. There are, however, no 
reliable methods for predicting Nu, at an arbitrary 

point around a circular cylinder. Only in the 
upstream region of the cylinder where no separation 
occurs, we can calculate Nu, for Re --* co with 
sufficient accuracy by using Merk’s method men- 
tioned earlier. Therefore, the calculations of the ratio 
Nu/Nu, have been made only for Re -, co and only 
in the upstream region of the cylinder. The resulta for 
8 = 0 and n/4 are shown in Fig. 8. It is seen from the 
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figure that the response time of heat transfer 
Pr - 0. Pe-. a, increases monotonically with increasing Prandtl 

number. 
Finally, we shall calculate the mean Nusselt 

number averaged over the surface of the cylinder; i.e.’ 

s 

* - 
Nu = (l/n) Nud%. (48) 

0 

Using (44), the expression for Nu may be written, as 
- 
Nu = (Pe/T)“2{ l/(n)“’ + (l/2)(T/Pe)“2 

- [1/4(x)“‘] (T/Pe) 

-[l/4(Pr)“2]h;(0)TZ+...}. (49) 

- 

----- Present results 

- Invrsad theory 

Merk’s method 

Figure 9 shows the resulting curves of Nu plotted as 
a function of T at Pr = 0.7 and 10, respectively, for 
parametric values of Re and Fig. 10 shows those at 
Re = co for parametric values of Pr. In Fig. 10, the 
result of the inviscid theory is also included for 
comparison. 

CONCLUSION 

II 

The analysis of Bar-Lev and Yang for the problem 
of transient flow past an impulsively started circular 
cylinder is extended to analyse a transient tempera- 

I/T ture field which is produced by sudden imposition of 

FIG. 7. Comparison of the present results for Pr + 0 with a constant temperature difference between the cylin- 
those of inviscid theory. der and the fluid as the impulsive motion is started. 

I I I I 
0 02 04 016 06 

T 

FIG. 8. Variation in the ratio Nu/Nu,. 
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takes its minimum value at the rear stagnation point. 
Except for the case of small Prandtl number, the 
point of minimum Nusselt number moves upstream 
in due time and the Nusselt number begins to 
increase at this point. This increase in Nu is more 
noticeable for larger values of Pr. For sufficiently 
small Prandtl number fluids, such an increase is not 
found for T < 1. 

FIG. 9. Variation in the mean Nusselt number. 

(3) Since the above increase in Nusselt number 
may be considered to be closely related to flow 
separation, comparison is made of the progression 
with time of the point of minimum Nusselt number 
and the point of separation. It is found that above 
some critical Prandtl number, the increase in Nu 
occurs before flow separates and after flow sepa- 
ration occurs, the increase in Nu begins in the 
unseparated region in front of the separation point. 
For smaller values of Pr, on the other hand, the 
increase in Nu begins after flow separates and the 
minimum Nussclt number takes place somewhere 
between the separation point and the rear stagnation 
point. 

(4) The larger the Prandtl number is, the longer 
the response time of heat transfer is. 

--- -- Inwscid theory 

I o- 

050 05 I IO 1 

FIG. 10. Variation in the mean Nusselt number. 

The main results obtained in this paper may be 
written as follows. 

(1) The local Nusselt number and the mean 
Nusselt number averaged over the surface of the 
cylinder are given by (44) and (49), respectively, and 
their convergences become better for larger values of 
Pr. 

(2) At early times after the impulsive start, the 
local Nusselt number along the surface decreases 
monotonously from the front stagnation point and 
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SOLUTION DE TEMPS BREF POUR LA CONVECTION THERMIQUE 
FORCEE ET INSTATIONNAIRE AUTOUR DUN CYLINDRE 

CIRCULAIRE EN MOUVE~~NT IMPULSIO~~L 

R&sum&On prbsente une solution de temps bref pour le transfert thermique instationnaire dun cyhndre 
circulaire en mouvement impulsionnel. On considere le cas ou le champ de temperature variable est 
produit par l’imposition dune difference de temperature constante entre le corps et le fluide lorsque le 
mouvement impulsionnel est dltclancht. La presente thbrie serait valable pour un nombre de Prandtl 
quelconque et pour un nombre de Reynolds superieur a 100. Les nombres de Nusselt obtenus sont 

compares avec ceux deja connus numeriquement ou th&xiquement. 

KURZZEIT-LGSUNG FUR INSTATIONARE WARMEUBERTRAGUNG 
DURCH ERZWUNGENE KONVEKTION AN EINEM IMPULSARTIG 

BEWEGTEN KREISZYLINDER 

~faeanng-Es wird eine K~~it-L~sung Rir die instation~re W~~e~~~rag~g an einem 
impulsartig bewegten Kreiszylinder angegeben. Es wird der Fall betrachtet, bei dem ein instationares 
Temperaturfeld dadurch entsteht, daR plijtzhch ein konstanter Temperaturunterschied zwischen KBrper 
und Fluid aufgepr2gt wird, sobald die impulsartige Bewegung beginnt. Die vorliegende Theorie miil3te fiir 
alle Prandtl-Zahlen und fur Reynolds-Zahlen groger als 100 giiltig sein Die in Nusselt-Zahlen 
ausgedriickten Ergebnisse werden mit den vorhandenen numerischen und theoretischen Werten 

verglichen. 

PElBEHME 3AflAqH 0 HECTAUMOHAPHOM TEllJIOO6MEHE IlPM BMHYXJJEHHOH 
KOHBEKUMM OT KPYl-JlOf-0 UMJIMH~PA. MMl-lYJIbCHO IlPMBEAEHHOf-0 

B ~BMXEHME 

AHwOTn@lg - npeACTZ3BReHO ~UiWiHe 3aAaYH HeCTaUiiOHapHOrO TeflJIOO6MeHa Kpyrnoro UHJlHHRpa, 

~M~yn~~Q ~P~~AeHHOrO 3 RBHXeWHe. PaccMa-rpuaaercn cnyrafi, t(orna H~Tau~oHapnoe reM- 
neparyprtoe none ofSpa3yeTcr npsi BHe3anHoM nanomeHnn II~CTOUHHOR pa3HocTn TeMnepaTyp 

MeXRy WfJiHHApOM H XiiAKOCTbiO B MOMeHf HaYaJla HMnyJIbCHOrO ABWKeHHIl LWiJliiHApa. npHBe- 

AeHHbIC T~peTM’leCKHe AaHHble CllpaBeAJlk46bl AJVI mo6bix ‘IWCeJl npaHRTnJ3 H ‘IllCeJl PeliHOnbACa, 

6onbwnx 100. nOJly’4eHHble WCJla HyCCeJIbTa CpaBfl~lOTCSl C 1.IMeKWHMWCR SWCfleHHblMH M 

TeOpeTH’feCKHMR pe3yflbTaTaMH. 


